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Abstract
We show that any Hermiticity and trace-preserving continuous semigroup
{γt}t�0 in d dimensions is completely positive if and only if the semigroup
{γt ⊗ γt}t�0 is positivity-preserving.

PACS numbers: 03.65.Yz, 03.65.Ud, 03.67.−a

Complete positivity is a property of linear transformations of quantum states whose importance
for physics is prominent in open quantum system dynamics and quantum communication.

The reduced dynamics of systems in (weak) interaction with their environment is usually
generated by the equation of motion of Kossakowski–Lindblad form [1] and thus completely
positive [2, 3]. However, it is still being debated whether such a constraint is physically
necessary [4–8].

In contrast, in quantum communication theory only completely positive linear maps can
describe local operations on quantum states [9]. Locality means that, given a bipartite system
A + B in a state ρAB , only the A-component is transformed according to γA ⊗ IB , where I is
the identity operation; then, if ρAB is entangled and γA not completely positive, γA ⊗ IB [ρAB ]
may develop negative eigenvalues and thus lose consistency as a physical state [10–12].

The same kind of argument is generally used to motivate why the reduced dynamics of an
open quantum system A must be described by a semigroup of completely positive dynamical
maps γ At ; if not,

(
γ At ⊗ IB

)
[ρAB ] may become physically inconsistent as the time evolution

of an initial entangled state ρAB [1].
In this case, however, the partner system B is not, as in quantum communication theory,

a concrete party, making up, for instance, a definite protocol for information transmission.
Rather, B is a totally uncontrollable entity that may happen to have become entangled with
the system of physical interest A; in this case one should not consider γ At but γ At ⊗ IB as the
effective time evolution acting not on a state ρA, but on the effective initial state ρAB of
the compound system A + B. It is the abstractness of such a setting that makes physically
unpalatable the request of complete positivity in open quantum system dynamics [5].

More concretely, one may consider A and B as systems of the same kind in (weak)
interaction with the same environment and thus evolving in time according to an approximate
reduced dynamics of the form γt ⊗ γt .
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Actually, there exist some experimental setups where this is the case and, moreover, the
compound system A + B is initially prepared in a maximally entangled state ρAB [13, 14].
Then, the question is whether, for (γt ⊗ γt)[ρAB ] to remain positive, γt need be completely
positive or not.

In theorem 3 we shall prove that, in the case of A and B d-dimensional systems, this is
indeed so: in order that γt ⊗ γt be positivity-preserving, γt must be completely positive. The
argument in favour of the necessity of complete positivity for semigroup dynamics of open
quantum systems is thus strengthened with respect to the argument based on γt ⊗ IB .

Complete positivity is formulated as a property of linear maps � on algebras of operators
X and by duality transferred to the corresponding transformations γ of quantum states,
according to

Tr(ρ�[X]) = Tr(γ [ρ]X). (1)

We shall consider states represented by density matrices ρ and restrict our attention to
d-dimensional quantum systems so that the operators X will be represented by d × d matrices
as well as the ρ.

Definition 1 [15]. � : Md(C) → Md(C) is completely positive if ∀n ∈ N, the map � ⊗ In
preserves positivity onMd(C)⊗Mn(C), whereMn(C) is any n× n matrix algebra and In the
identity operation on it.

In fact, one need not check all n but just n = d as stated by a theorem of Choi [16].

Theorem 1. � : Md(C) → Md(C) is completely positive if and only if � ⊗ Id is positivity-
preserving on Md(C)⊗Md(C).

Remark 1. If the map � : Md(C) → Md(C) is positivity-preserving, but not completely
positive, then there is a positive X ∈ Md(C)⊗Md(C) such that (� ⊗ Id)[X] is not positive.
If |ψ〉 is an eigenvector of (� ⊗ Id)[X] relative to a negative eigenvalue, via duality, we get

Tr((γ ⊗ Id)[|ψ〉〈ψ|]X) = 〈ψ|(� ⊗ Id)[X]|ψ〉 < 0. (2)

Therefore, the linear map γ ⊗ Id , dual to � ⊗ Id , does not preserve the positivity of |ψ〉〈ψ|.
Also, |ψ〉 must be entangled, for, if |ψ〉 = |ψa〉 ⊗ |ψb〉, then γ [|ψa〉〈ψa |] ⊗ |ψb〉〈ψb| is
positive.

As stated in the introduction, we are interested in semigroups of positive linear maps,
{γt}t�0, on the states over Md(C). In particular, we shall be concerned with Hermiticity and
trace-preserving, continuous semigroups on density matrices ρ ∈ Md(C),

γt ◦ γs = γt+s = γs ◦ γt ∀s, t � 0 (3)

Tr γt [ρ] = Trρ γt [ρ]† = γt [ρ] (4)

lim
t→0+

γt [ρ] = ρ (5)

the latter limit being understood in the trace-norm topology [2].

Proposition 1 [2]. Any semigroup {γt} satisfying (3)–(5) is generated by the equation:

∂tγt [ρ] = −i[H, γt [ρ]] +
d2−1∑
a,b=1

cab

[
Faγt [ρ]F †

b − 1

2

{
F

†
bFa, γt [ρ]

}]
(6)
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where H = H †,TrH = 0; TrF †
aFb = δab,TrFa = 0, Fd2 = 1d/

√
d and C = [cab] is

a (d2 − 1) × (d2 − 1) self-adjoint matrix depending solely on the choices of the traceless
matrices {Fa}d2−1

a=1 .

If one asks the γt to be completely positive, that is dual to completely positive
�t : Md(C) → Md(C), then

Theorem 2 [2]. The semigroup {γt}t�0 generated by (6) consists of completely positive maps
if and only if C = [cab] is a positive-definite (d2 − 1)× (d2 − 1) matrix.

Remark 2. If C = [cab] is positive definite then it can be written C = A†A, cab =∑d2−1
r=1 A∗

raArb, and
d2−1∑
a,b=1

cab

[
FaρF

†
b − 1

2

{
F

†
bFa, ρ

}] =
d2−1∑
r=1

[
VrρV

†
r − 1

2

{
V †
r Vr, ρ

}]

takes the Lindblad form [3] with Vr = ∑d2−1
a=1 A

∗
raFa . Conversely, given a generator in

Lindblad form, developing Vr = ∑d2−1
a=1 vraFa over a basis of traceless matrices Fa , one ends

up with a generator as in (6) with cab = ∑d2−1
r=1 VraV

∗
rb making for a (d2 − 1) × (d2 − 1)

positive matrix C = [cab].

Given a semigroup {γt}t�0 satisfying (3)–(5) and generated by (6), the justification why γt
should be completely positive and thus the matrix C = [cab] positive, is based on the fact that,
otherwise, γt ⊗ Id would fail to preserve the positivity of entangled states onMd(C)⊗Md(C)
(see remark 1).

However, while the first factor in Md(C) ⊗ Md(C) refers to a concrete open quantum
system evolving in time according to (6), because of the interaction with a certain environment,
the second factor represents a mere possibility of entanglement with anything described by a
d-dimensional system and generically out of physical control.

Instead, we argue that complete positivity is necessary to avoid physical inconsistencies
in compound systems consisting of two d-dimensional systems that interact with the same
environment, but not among themselves, neither directly, nor indirectly, that is through the
environment itself. In such a case, the two systems are expected to evolve according to the
semigroups of linear maps γt⊗γt , t � 0, where γt is the single open system dynamics obtained
when only one of them is present in the environment.

A necessary reQuest for the physical consistency of such dynamics is that the γt ⊗ γt
preserve the positivity of all separable and entangled states of the compound system, which
now describe physically concrete and controllable settings.

Theorem 3. If {γt}t�0 is a Hermiticity and trace-preserving continuous semigroup of linear
maps over the states of Md(C), the semigroup {γt ⊗ γt}t�0 of linear maps over the states of
Md(C)⊗Md(C) is positivity-preserving if and only if {γt}t�0 is made of completely positive
maps.

The proof of theorem 3 will consist of several steps. We need just show the ‘only if’
part. Indeed, if γt is completely positive, γt ⊗ Id and Id ⊗ γt are both positive and such is the
composite map γt ⊗ γt = (γt ⊗ Id) ◦ (Id ⊗ γt): actually, it is completely positive (see e.g.,
proposition 4.23 in [15]).

Remark 3.
1. If the γt preserve the positivity of states of Md(C), γt ⊗ γt preserves the positivity of

separable states of Md(C)⊗Md(C): this follows by a straightforward adaptation of the
argument in remark 1.
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2. For generic positive linear maps γ on the states of Md(C), it does not follow that, if
γ ⊗ γ is positivity-preserving, then γ is completely positive. A counter example is
the transposition τ over M2(C): τ ⊗ τ is positivity-preserving, but τ is not completely
positive. We note, however, that τ cannot be among the γt of a continuous semigroup
over the states of M2(C) since it is not connected to the identity operation.

3. There are experimental situations that can be described by semigroups {γt ⊗ γt}t�0. For
instance, neutral mesons may be imagined to suffer from dissipative effects due to a noisy
background determined by Planck’s scale physics. As decay products of spin 1 resonances,
these mesons are produced in maximally entangled states and, while independently flying
apart back to back, they arguably evolve according to semigroups {γt ⊗ γt }t�0 [12–14].
In such a context, whether γt ⊗ γt is positivity-preserving is crucial for concrete physical
consistency.

Lemma 1. If {γt}t�0 is a semigroup satisfying (3)–(5) and generated by (6), the semigroup
{γt ⊗ γt}t�0 consists of positivity-preserving maps only if

Lφ,ψ ≡ 〈φ|(L⊗ Id + Id ⊗ L)[|ψ〉〈ψ|]|φ〉 � 0 (7)

for all orthogonal vector states |φ〉, |ψ〉 in Cd , where L is the generator on the right-hand side
of (6) and Id is the identity operation on Md(C).

Proof. From positivity preservation it follows that Gφ,ψ (t) := 〈φ|(γt ⊗ γt)[|ψ〉〈ψ|]|φ〉 � 0,
for all |φ〉 and |ψ〉 ∈ Cd ⊗Cd . Choosing 〈φ|ψ〉 = 0, if dGφ,ψ(t)/dt|t=0 < 0, then Gφ,ψ (t) � 0
is violated in a neighbourhood of t = 0. Thus (7) follows. �

Lemma 2. In the hypothesis of lemma 1, let {|j 〉}dj=1 be an orthonormal basis of Cd , and
	,
 the d × d matrices 	 = [ϕij ],
 = [ψij ] consisting of the coefficients of the expansion
of |φ〉 and |ψ〉 with respect to the basis {|j 〉 ⊗ |k〉}dj,k=1 of Cd ⊗ Cd . Then

Lφ,ψ =
d2−1∑
a,b=1

cab
[

Tr(
	†Fa)Tr
(
	
†F †

b

)
+ Tr((	†
)T Fa)Tr

(
(
†	)T F †

b

)]
(8)

where C = [cab] is the matrix of the coefficients and Fa, Fb the traceless matrices appearing
in (6), while XT denotes transposition of X with respect to the chosen basis.

Proof. Let |φ〉 = ∑d
j,k=1 ϕjk|j 〉 ⊗ |k〉, |ψ〉 = ∑d

j,k=1 ψjk |j 〉 ⊗ |k〉; then, one calculates

Lφ,ψ =
∑
ij

∑
kl

∑
pr

(
ϕ∗
ijϕklψpjψ

∗
rl + ϕ∗

jiϕlkψjpψ
∗
lr

) 〈i|L[|p〉〈r|]|k〉

=
∑
ik

∑
pr

[(
	†)pi(	
†)kr + (	†
)ip(
†	)rk]〈i|L[|p〉〈r|]|k〉. (9)

The commutator and the anticommutator in the generator L[·] drop from equation (9); this
is easily seen by noting that, given any K ∈ Md(C), 〈i|(K|p〉〈r|)|k〉 = Kipδrk. In (9),
we can further sum over either r = k or i = p; in either case, as 〈φ|ψ〉 = 0, we find
Tr
	† = (Tr	
†)∗ = 0 and the result follows. �

Lemma 3. In the hypothesis of lemma 1, the matrix C = [cab] in (8) must be positive definite.

Proof. With any �w = {wa}d2−1
a=1 ∈ Cd2−1, we consider W = 1

2

∑d2−1
a=1 w

∗
aFa , which is a

traceless d × d matrix. If matrices
 and	 exist such that	
† = W and
†	 = WT , then,
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from lemmas 1 and 2 and the orthogonality of the matrices Fa (compare theorem 2) it follows
that

Lφ,ψ =
d2−1∑
a,b=1

cabw
∗
awb � 0 (10)

hence the positivity of C = [cab] and the proof of theorem 3. Any matrixW and its transpose
with respect to the given basis, WT , have the same elementary divisors; therefore, they are
similar to the same canonical Jordan form and thus similar to each other [17]. Let 	 be such
that	−1W	 = WT , that is we take as vector |φ〉 ∈ Cd⊗Cd the one whose componentsφij are
the elements of the similarity matrix transforming the givenW into its transposeWT . It then
follows that 
† = 	−1W and, moreover,
†	 = 	−1W	 = WT , which is what we need.

�

Remark 4.

1. In the proof of theorem 2 in [2], the maximally entangled state |φ+〉 = 1
d

∑d
i=1 |i〉 ⊗ |i〉

plays a crucial role; however, it concerns a generator of the form L ⊗ Id instead of
L⊗ Id + Id ⊗ L. In such a case, (8) reads

Lφ,ψ =
d2−1∑
a,b=1

cab Tr(
	†Fa)[Tr(
	†Fb)]∗.

Choosing 	 = 	† = 1d/d given by the components of |φ+〉 and W = 
† =
d

∑d2−1
k=1 w∗

kFk , the result of theorem 2 in [2] immediately follows from our argument, for

Lφ,ψ =
d2−1∑
a,b=1

cabw
∗
awb � 0.

2. The choice of 	 = 1d/d in the previous remark is fixed for all traceless matrices W and
it is 
† which is chosen to be W . This argument, however, does not work with generic
Lφ,ψ as in (7), for, in general, WT �= W . Nevertheless, when the Fa are self-adjoint and
C = [cab] symmetric, the choice 	 = 1d/d suffices for proving theorem 3. In this case,
positivity of C = [cab] is checked against real vectors �w ∈ Rd2−1, so that one can restrict
to self-adjoint W = W † and choose a basis {|i〉} ∈ Cd such that W is diagonal; then
(
†)T = WT = W .

3. When d = 2, the maximally entangled Bell state |φ〉 = (|1〉 ⊗ |2〉 − |2〉 ⊗ |1〉)/√2
plays for the generator L ⊗ Id + Id ⊗ L the same role played by the symmetric state
|φ+〉 for the generator L ⊗ Id in remark 4.1 [2]. Namely, given any traceless matrix

W = (α β

γ −α
)
, we can choose 	 = 1√

2

( 0 1
−1 0

)
and 
† = 	−1W = √

2
(−γ α

α β

)
. It turns

out that 
†	 = (−α −γ
−β α

) = −WT [18] and the minus sign is not felt by the expressions
in (8).
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